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Abstract

A rigid singularity theorem for spacetimes admitting irrotational reference frames is proven as
an extension of a result (Theorem 3.5) of Petersen and Walschap [Observer fields and the strong
energy condition, Class. Quantum Grav. 13 (1996) 1901-1908.]. © 1998 Elsevier Science B.V. All
rights reserved.
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Bartnik [1] gave the following splitting conjecture for spatially closed spacetimes:

Conjecture. Let (M, ( , )) be a globally hyperbolic spacetime which contains a compact
spacelike hypersurface S and obeys the strong energy condition, Ric(z,z) > 0 for all
timelike vectors z. If (M, ( , )) is timelike geodesically complete, then (M, ( , ) splits
isometrically into the product (R x N, — dt> @ h), where (N, h) is a compact Riemannian
manifold.

The conjecture may also be interpreted as a rigid singularity theorem: unless spacetime
splits, spacetime must be singular, that is, timelike geodesically incomplete. (See [4] for
the progress shown in proving this conjecture.)
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In this short communication, we give an extension of a result of Petersen and Walschap
[5, Theorem 3.5] to a rigid singularity theorem similar to the above conjecture for space-
times admitting a certain type of irrotational reference frame. We prove the following
theorem:

Theorem 1. Let Z be an irrotational reference frame on a spacetime (M, { , )) with
achronal, compact, simply connected restspaces. If ZdivZ > 0 and Ric(Z,Z) > 0 on
M then either (M, { , )) is timelike geodesically incomplete, or else (M, { , ) splits
isometrically as a product (R x N, — dt*> @ h), where (N, h) is a compact simply connected
Riemannian manifold.

We essentially repeat the proof of Petersen and Walschap (5, Theorem 3.5] in the first
half of the proof of the above theorem. The second half of its proof is inspired from
Fischer [3].

Recall that a future-directed unit timelike vector field Z on a spacetime (M, { , )) is
called a reference frame. The orthogonal bundle Z to Z is called the restbundle of Z. For
a reference frame Z, the bundle homomorphism Az : Z L 5 74 is defined by AzX =
—VxZ forevery X € I’ Z+ (cf. [8, p- 551). A reference frame Z is called irrotational if
Ay is self-adjoint. This is equivalent to that Z+ is integrable (cf. [S, Proposition 2.1]). In
this case, inextendable integral manifolds of Z+ are called the restspaces of Z. Note that,
if Z is an irrotational reference frame then Az is the shape operator of the restspaces of Z.
Moreover, note also that the acceleration Vz Z of Z is a vector field tangent to the restspaces
of Z. In [5], the following interesting observation is made:

Lemma 1[5, Lemma 3.4]. Let Z be an irrotational reference frame and let w(-) =
(-, VzZ). Then the restriction of w to any restspace of Z is closed.

To prove Theorem 1, we also need a lemma concerning the flows of complete vector
fields. Let Z be a complete vector field on a manifold M and ® : R x M — M be its
flow. Hence if we define @;(p) = @ (¢, p) then ®;(p) = c,(t), where c,(¢) is the integral
curve of Z with ¢,(0) = p. Also note that &, : M — M is a 1-parameter group of
diffeomorphisms of M parametrized over R.

Lemma 2 [3, Proposition 6.1]. Let Z be a complete vector field on a manifold M and let
@ :Rx M — M beits flow. If (a, v) € T (R x M) then

Puit.py(@, v) = al(Z o P)(p) + (Pr)xp,

where (Z o ,)(p) = Zo,(p) = Zc, 1)

Proof of Theorem 1. Let {X|, ..., X,} be an adapted moving frame near p € M, that
is, {X1,..., X,;} is a Lorentzian basis frame near p with (VX;), =0fori = 1,...,n
(cf. [7,p. 152]). Thenat p € M,



160 E. Garcia-Rio, D.N. Kupeli/Journal of Geometry and Physics 28 (1998) 158-162

n n
ZAvZ = (X, X)Z{Vx,Z, Xi) = )_(Xi, Xi){(VZVx,Z, X;)
i=l1 i=1

—Z(X,, WR(Z, X)) Z, X)+Z<X,, (Vx,VZZ, X;)
i=l1

—Z(Xi, Xi)(Vvy,zZ, Xi)
i=l
= —Ric(Z, Z) + divVz Z — tr(VZ)>.

Also, since ((VZ)2Z, Z) = 0, tr(VZ)? = tr A%, and we have
ZdivZ = —Ric(Z, Z) + divVzZ — tr A%.
Now let N be a restspace of Z. Then along N, we have
divvzZ =|| VzZ ||> +divy VzZ,

where divy is the divergence in the induced Riemannian structure of (N, ( , }). Thus
along a restspace N of Z, we have

ZdivZ = —Ric(Z, Z)+ | V2Z |* +divyVzZ — tr A2, 1)

Hence by the assumptions Z div Z > 0, Ric(Z, Z) > 0 and the fact that tr AZZ > 0 (since
Ay is self-adjoint), it follows that

IVZZI? + divyVzZ > 0

on every restspace N of Z.

Now let w(-) = (-, VzZ) be the metrically equivalent 1-form to VzZ on (M, { , )).
Then by Lemma 1, the restriction of w to arestspace N is closed and then it follows from the
simple connectivity of N that there exists a function f on N such that VzZ = grad,, f on
N, where grad, is the gradient in the induced Riemannian structure of (N, { , }). Hence,
if we denote the Laplacian in (N, { , )) by Ay, we have

Anel = —(|[VZZ|? + divaVz2)ef <.

Thus e/ is a subharmonic function on (N, ( , )) and since N is compact, it follows
that ¢/ is constant on N, that is, f is constant on N. But then it follows that VzZ = 0
along N, that is, Z is geodesic reference frame along N and consequently, it follows from
(1) that tr AZ = 0 along N, that is, Az = 0 along N and hence N is totally geodesic.
Consequently, we have two totally geodesic foliations on (M, { , )), one by the integral
curves of Z and the other by the restspaces of Z. Now suppose (M, ( , }) is timelike
geodesically complete. Then since Z is a geodesic reference frame, Z is complete on M,
andlet @ : R x M — M be its flow. Now let N be a restspace of Z and define

D' =Plp v RXxN—>UCM,
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where U is the image of @O, First we observe that #°({t} x N) = @,(N)isalsoa restspace
of Z for all 7. For, let X be a vector field on N and let X be a vector field on U defined
by Xo,(p) = (@)« Xo. (Note that, since the achronality of the restspaces of Z implies that
(M, { , ))ischronological, integral curves of Z are injective and hence the vector field X
is well-defined). Then since [Z, X] =0,

Z(Z,X) = {(Z,VzX) = (Z,VxZ) = 0.

Thatis, X is orthogonal to Z. Hence since @, is nonsingular for each ¢, (®;), isomorphically
maps the tangent space of Nat pto Z <J51 () Thus by the uniqueness of the restspace passing
from @, (p), it follows that ¢, (N) is also a restspace of Z (since N is compact). Next we
will show that ®9 is a local diffeomorphism onto its image. Now let (a, v) € Ty (R x N).
Then by Lemma 2,

¢9(1.p)(a’ V) = @i, py(a, v) = a(Z o §)(p) + (Pr)xpv.

Hence since 0 # Zg,(p) and (P;),v € T, (py®P;(N) are orthogonal, if ¢>S(ryp)(a, v) =0
then it follows that (a, v) = 0, that is, @Y is a local diffeomorphism. Finally we show that
@Y is injective. Let (11, p1), (t2, p2) € R x N such that #°(t1, p;) = ®°(t2, p»). Then
since @y, _;, (p1) = p2, we have two possibilities. The first one is #; = t,. In this case, since
@ = id, it follows that p; = p. The second one is #; # . But this case is not possible
since then there exists an integral curve of Z from p, to p; in contradiction to the achronality
of N. Thus @9 is a diffeomorphism of R x N onto U . Hence since the foliations determined
by the integral curves of Z and the restspaces of Z in U are totally geodesic, it follows from
[6, Proposition 3-d] that (U, { , )) splits isometrically to a product (R x N, — diZ @ h),
where £ is the induced Riemannian metric on the restspace N of Z. But note that since
(N, h) is a complete Riemannian manifold, (U, { , }) is geodesically complete and hence
is an inextendable spacetime (see [2, p. 220]). Thus (U, ( , D =M, ( , )). 0

Remark 1. Note that a reference frame Z is called rigid if Az is skew adjoint. Hence for
a rigid reference frame Z, divZ = —tr Az = 0. Thus we also have the following special
case of Theorem 1. (Also compare with [5, Proposition 4.3].)

Theorem 2. Let Z be an irrotational, rigid reference frame on a spacetime (M, { , })
with achronal, compact, simply connected restspaces. If Ric(Z, Z) > 0 on M then either
(M, ( , ) is timelike geodesically incomplete, or else (M, ( , )) splits isometrically as
a product (R x N, —dt* @ h), where (N, h) is a compact simply connected Riemannian
manifold.
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